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Abstract—In the domain of Natural Language Processing
(NLP), it is unheard of for models to be trained on multiple
tasks sequentially. This is because after the first task, there is
a significant dip in performance on the first task while training
for the second task. This is known as catastrophic forgetting.
Continual learning aims to combat this problem by retaining
knowledge of previous tasks while being able to adapt to any
new task. We utilize a simple regularization based method along
with transformers which can adapt to almost any NLP task while
being fast and memory efficient.

Index Terms—neural networks, natural language processing,
catastrophic forgetting, continual learning, elastic weight consol-
idation

I. INTRODUCTION

Textual data is ubiquitous and the amount of such data
at hand increases rapidly. Several complex natural language
processing (NLP), natural language understanding (NLU) and
natural language generation (NLG) models have been pro-
posed to deal with textual data. Yet, many of these models are
designed to be trained for a specific purpose or problem, for
example, sentiment analysis, paraphrase generation, sentiment
analysis, etc. While humans and animals intrinsically possess
the ability to retain knowledge from various sources and
for a long period of time, computational systems do not.
When several tasks are trained independently and sequentially,
catastrophic forgetting [1] is observed in neural networks.
Catastrophic forgetting is the tendency of neural networks to
completely and abruptly forget previously learned information
upon learning new information. This is a common problem
existent in deep learning as weights obtained after training for
a certain task change drastically when subsequently trained for
another task.

In light of catastrophic forgetting, several techniques have
been proposed to alleviate this major problem. Nevertheless, a
separate study has emerged for lifelong learning or continual
learning: that is, the ability of a deep neural network to
learn consecutive tasks without forgetting how to perform on
previously trained tasks. There has been significant research
on continual learning in the field of computer vision, with NLP
rather behind. Additionally, almost all of these approaches
have been proposed to deal with streams of fundamentally
indifferent tasks. However, in the field of NLP, it is sometimes
desirable to have a model that can perform several fundamen-
tally different tasks without catastrophic forgetting.

Transfer learning can be used to solve several fundamentally
different tasks. In computer vision, pre-training is typically
done via supervised learning on a large labeled data set like
ImageNet. Modern techniques for transfer learning in NLP
often pre-train using unsupervised learning on unlabeled data.
This approach has recently been used to obtain state-of-the-
art results in many of the most common NLP tests and
benchmarks. Nonetheless, transfer learning cannot effectively
subsidize the effect of catastrophic forgetting. As the number
of tasks become large, the experience from the pretrained task,
may not perform well on subsequent tasks (negative transfer).

[2] have proposed an interesting approach where each NLP
task is treated as a text to text problem. We utilize a model that
adopts this idea and make use of Elastic Weight Consolidation
[3] to limit catastrophic forgetting, while simultaneously able
to adapt to various types of NLP tasks. Our model has an
added advantage that it is computationally inexpensive and
memory efficient

Our main contributions to this paper is as follows:
• We utilize a text to text model that can be learned on

various fundamentally different NLP tasks
• We demonstrate that our text to text approach when

combined with a simple regularization based continual
learning approach is adequate to alleviate the problem of
catastrophic forgetting

• We compare our model performance to other proposed
models and measure the amount of positive transfer and
catastrophic forgetting

II. RELATED WORK

A. Lateral Transfer

Progressive Neural Networks [4] avoid catastrophic forget-
ting by adding support for lateral transfer, allowing useful
features to be extracted for new tasks. Forgetting is also
prevented by adding a new column of neural network for
each task that is being solved. However, as the number of
tasks increases, the number of parameters as well as columns.
The paper demonstrates positive transfer in Reinforcement
Learning (RL) domains by using RL agents within a continual
learning framework.

B. Regularization-Based Methods

1) Elastic weight consolidation: (EWC) [3] ensures that
catastrophic forgetting does not take place by selectively



decreasing the plasticity of weights (important parameters are
constrained to their old values). EWC regularizes the model
parameter at every step, enabling the model to find a good fit
for both tasks.
Suppose that the parameters are set such that the performance
is optimized for a task A. While learning task B, EWC retains
the task A performance by constraining the parameters for
task A to stay in a region of low error for task A. The model
is implemented such that the constraint gives us a quadratic
penalty, similar to a spring stretching from its old parameters,
hence the name. The paper demonstrates continual learning
with EWC in a supervised learning context and reinforcement
learning context.

2) Information Disentanglement Based Regularization:
A continual learning model that uses information disentan-
glement based regularization on text classification [5]. Text
hidden spaces are disentangled into representations common
to tasks, and these representations are further regularized to
narrow down the knowledge that needs to be generalized.

3) Episodic Memory: Gradient Episodic Memory (GEM)
[6], a model for continual learning, uses episodic memory
to minimize catastrophic forgetting. The episodic memory
stores some representative examples for each task. The model’s
ability to learn is measured with backward transfer (BWT)
and forward transfer (FWT). BWT is positive if improvement
in performance of previous tasks are observed after training
on new tasks. Large negative BWT indicates that catastrophic
forgetting is taking place. FWT is positive if improvement on
new tasks is observed after training on previous tasks.

4) Improved memory-based parameter adaptation: A life-
long learning model with episodic memory is used for sparse
experience replay (sampling from examples at uniform in-
tervals of time and performing gradient updates) and local
adaptation [7] to protect it from catastrophic forgetting.

5) Synaptic Framework: Forgetting can be alleviated using
a synaptic framework [8] for neural networks, where each
synapse estimate their importance for solving past tasks.

6) Dynamically Expandable Networks: Dynamically Ex-
pandable Networks (DEN) [9], partially retains its old net-
work, and takes advantage of similarities between various
tasks. It increases its capacity to learn new tasks and prevents
catastrophic forgetting effectively.

7) LAMOL: LAnguage MOdeling for Lifelong Language
Learning (LAMOL) [10], automatically generates sample
training examples of previous tasks without the use of extra
memory or model capacity. Hence, it simultaneously learns as
well as generate examples, preventing catastrophic forgetting.
The LAMOL model can perform five very different language
tasks sequentially.

C. Transfer Learning

Text-to-Text Transfer Transformer (T5) [2], uses a trans-
former architecture that converts all text-based language prob-
lems into a text-to-text format and allowing us to use the same
model for a wide variety of tasks.

III. METHODOLOGY

A. Data Pre-processing
Textual data from various datasets as mentioned in section

IV-A is used to train our model. No stemming or lemmatiza-
tion is done to preserve grammatical syntax and semantics.
Each input sequence is padded with a ¡pad¿ token to the
required length. The end of sentence token is ¡/s¿ and unknown
token is ¡unk¿. Depending on the exact NLP task required to
be performed, we add a prefix at the beginning of an input
sequence. The sequences are then fed into a tokenizer. These
tokenized sequences are used as input to the transformer.

B. Training
Assume a stream of tasks {TA, TB , ...}, where the number

and type of tasks may be unknown. Directly training the LM
on these tasks sequentially results in catastrophic forgetting.

The first task TA is trained as usual. After TA has finished
training, the next task TB is trained on, but with an extra
regularization (EWC) term. The overall loss for training TB

is given as:

L(θ) = L(θB) +
λ

2

∑
i

Fi(θi − θ∗A,i)
2 (1)

where,
L(θB) = loss for training TB only,
θA = optimal parameters for TA,
Fi represents the element at (i, i) in the Fisher information

matrix
λ = hyperparameter that signifies how important the old task

TA is compared to the new one TB

When a third task TC arrives, TA and TB together can be
treated as the old task, and F is computed for them jointly.

IV. EXPERIMENTAL SETUP

A. Datasets
1) SQuAD (Stanford Question Answering Dataset): [11] A

large reading comprehension dataset consisting of question-
answer pairs from Wikipedia articles. The dataset contains
over 100,000 questions, and the answer to each question is
present in the corresponding passage of the Wikipedia article.
The input given to our model is a question, along with its
context, and is fed into the model.

2) MNLI (Multi-Genre Natural Language Inference): This
dataset is a collection of 433k sentence pairs with information
about entailment of the pair of sentences. Each pair has a
label associated with it, where, ‘0’ represents entailment, ‘1’
represents neutral, ’2’ represents contradiction.

3) PAWS (Paraphrase Adversaries from Word Scrambling):
[12] This dataset consists of 108,463 human labelled and 656k
noisily labelled pairs generated from Wikipedia pages and
Quora. Each pair has two sentences, and each pair has a label
associated with it, where, ‘0’ represents different meaning, ‘1’
represents paraphrase. We removed the instances where the
label = ‘0’, and reversed the instances (the target sentences
became input sentences). We name our transformed dataset as
eqPAWS.



Fig. 1. SQuAD F1 Scores and MNLI Accuracy

Fig. 2. PAWS and Quora BLEU Scores

SQuAD
F1

SQuAD
Exact Match (%)

MNLI - matched
Accuracy (%)

MNLI - mismatched
Accuracy (%)

eqPAWS
BLEU

eqQuora
BLEU

T5-Small original 84.12 74.95 80.40 81.94 0.00 0.04
After standard fine-tuning 12.83 0.10 49.47 49.58 0.27 0.25

After EWC training 81.48 70.87 78.59 78.88 0.27 0.24

4) Quora Question Pairs: The Quora dataset consists of
question pairs, where the task is to determine whether the
questions are paraphrases of each other. Each pair has a
label associated with it, where, ’false’ represents different
meanings and ’true’ represents paraphrases. We use the same
transformation as the PAWS dataset, and name our dataset as
eqQuora.

B. Training workflow

We use the pre-trained model T5-Small [2] to conduct our
experiments. Out of all the tasks it was trained on, we consider
the ”to be remembered tasks” to be Question-Answering and
Natural Language Inference. The model is fine-tuned for
Paraphrase Generation using the eq-PAWS dataset and later the
eq-Quora dataset. During the fine-tuning process, the model is
evaluated on all of these tasks every 500 iterations. Fine-tuning
stops when the BLEU score for the currently training task does
not deviate by 10−3

C. Loss function

We first fine-tune the T5-Small model for paraphrase gen-
eration using cross-entropy as the loss function. Afterwards,
we re-initialize all the parameters and fine-tune them for para-
phrase generation using the modified loss function described
in Equation 1.

D. Hyperparameters

An initial learning rate of 3×10−4 along with the AdamW
optimizer [13] scheduled linearly was found give the best
results. Early stopping was used to stop training when valida-
tion loss saturated. Convergence was observed to be achieved
relatively fast.

E. Evaluation

While fine tuning, metrics for each task are calculated
on 128 randomly sampled instances from the corresponding
datasets. After fine tuning, the metrics for each task are
calculated on the entire dataset. The metrics and dataset for
each task are:

1) Question-Answering: Metrics: F1 score and Exact
Match. Dataset: SQuAD validation.

2) Natural Language Inference: Metrics: Accuracy.
Dataset: MNLI validation-matched and mismatched. (Note
that evaluating on the validation-mismatched is omitted
during the fine-tuning process)

3) Paraphrase Generation: Metrics: BLEU score. Dataset:
eq-PAWS while training on eq-PAWS, then eq-Quora while
training on eq-Quora.

V. RESULTS AND DISCUSSION

T5-Small was originally trained on SquAD, MNLI and a
couple of other datasets (excluding PAWS and Quora). It was



originally trained to identify a pair of paraphrases (labelled
as 0 or 1) instead of generating them. From our results, it is
evident that the model performs well on SQuAD and MNLI,
but poorly on paraphrase generation (eqPAWS and eqQuora
datasets). This is to be expected, because it wasn’t a task it
was trained on.

We then fine-tune the model for paraphrase generation
using the eqPAWS and eqQuora datasets. We evaluate the
model on all the mentioned tasks although performance on
paraphrase generation has gone up, the performances on
SQuAD and MNLI have decreased drastically. Formally, our
model has exhibited catastrophic forgetting. It is unable to
retain knowledge of past tasks when exposed to new ones.

We then re-initialize all the parameters of the model, and
train it on the same new task, paraphrase generation, using
EWC loss. On evaluation, we observe that the performance
on old tasks are much better than with standard fine-tuning,
while also being able to learn new task reasonably well. This
shows that the new model is much less prone to catastrophic
forgetting.

VI. CONCLUSION AND FUTURE WORK

From our experiments, it can be inferred that using EWC
in a sufficiently large model like T5 which has numerous
parameters (many of which are not as important to a task
as others) makes fine-tuning possible while retaining previous
knowledge.
Additionally, it is computationally inexpensive, memory effi-
cient and can adapt to fundamentally different NLP tasks. In
the near future we look to increase the number of NLP tasks
as well as observe performance as we do so.
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